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ABSTRACT

Conjugated polymers have been used in various applications (battery, supercapacitor,
electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode,
electrochromic display etc.) due to their excellent conductivity, electrochemical and optical
properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science,
engineering, and industry due to its redox properties, environmental stability, conductivity, and
optical properties. Moreover, it is a polymer with fast electroactive switching and reversible
properties displayed at low potential, which is an important feature in many applications. The
thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-
situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to
synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of
this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic
medium by studying their electrochemical properties. These films were fabricated using two
deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization
of these films was done using techniques such as Fourier Transform Infrared Spectroscopy
(FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD).
FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films.
However, for the dye incorporated films, since there was an addition in the synthesis of the
material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1
layer PANI showed compact film morphology, comparing to other PANI films, which displayed
a fiber-like structure. Finally, the electrochemical properties of these thin films were studied

vii

www.manaraa.com



using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance
spectroscopy (EIS) in different scenarios. These scenarios included the study in different acid
based electrolytes and different gel based electrolytes. The ultra-thin self-assembled PANI films
were shown to have a faster switching time, especially for the 1 layer PANI, whereas the color
contrast could be observed for the film containing the dye molecule. Also, HCI based electrolyte
gave the best electrochemical reversibility compared to other acids used. For the gelatin and
PVA based electrolytes, having the same concentration, the results were similar. Hence, the
change in the electrolyte consistencies, from liquid to semi-solid, did not change the
electrochemical properties of the films. Finally, in the EIS, it was shown that these PANI thin
films exhibit a pseudo-capacitance behavior, and as the film thickness grew, the capacitance

increased.

iix
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CHAPTER 1. INTRODUCTION

1.1 Conjugated Electrochromic Materials

Polymeric materials have been considered as insulators for decades; however, it has been found
that these polymers could exhibit conductive properties by undergoing a redox reaction called
doping. By doping, the conductivity of the semiconductor can increase by several orders in
magnitude. These polymers are, hence, called conjugated, because of the delocalization of the 7t-
electron along their backbone [1]. The electrical properties of conjugated polymers are
dependent on the redox state, which alternates the polymers’ electronic structure. As such, the
polymer gains the property of changing from insulating to a conductive material, which is known
as the doping process [2]. There are two types of doping: P-type doping and N-type doping. N-
type doping tends to lose an electron, which increases the conductivity of the material and is
referred as the reduction of the polymer. On the other hand, P-type doping is referred as the
oxidation of the polymer and is the most used type of doping in the semiconducting industry. To
achieve this change in the material’s property, a chemical process can be induced by adding an
oxidizer or reducer, or by using an electrochemical synthesis [3]. n-conjugated polymers have
attracted attention for many applications in EMI shielding [4], battery [5], supercapacitor [6],
chemical sensor [7], biosensor [8], nanocomposite [9], light-emitting-diode [10], electrochromic
display [11], because of their high electrical conductivity when doped, thermal stability,
oxidation resistivity, high volume, and low cost. The common conjugated polymers are
polypyrrole (PPy), polythiophene (PT), and polyaniline (PANI) [12]. Some of these polymers are

shown in figure 1.
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Poly (p-phenylene) Polyphenylene vinylene

Polythiophene Polyaniline

o as

Polyisothianaphthene

Figure 1 Chemical structure of conjugated polymers. Reproduced with permission [12]

Figure 2 shows the conductivity scale of different conjugated polymers and metals. Polyaniline
(in its emeraldine form) is shown as the least conductive material in the scale, comparing to other

polymers such as polypyrrole and polyacetylene.

T ..,
g, -
B 2 =
2= 2= 25 3 g5
E“B“'g g TE B EE
s $2855 33 <& if
2 5353 8 B
£ e 5 £ 5
P A am -
107 107 i 10!

Conductivity, S/cm

Figure 2 Conductivity ladder of different materials. Reproduced with permission [13]
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As mentioned previously, conjugated polymers have doped and dedoped forms. The dedoped
form constitutes of a n-bonding orbital (valence band(VB)-highest occupied energy level), and a
n -antibonding orbital (conduction band(CB)-lowest occupied energy level) [14]. The distance
between these two orbitals is known as the energy band gap E4. No electron exists in this region,
and thus allows many intrinsic properties of conducting polymers to be exacted. For metals, there
IS no band gap, and for the semiconductors, the distance between the two orbitals is narrow. For

the case of insulators, there is a wide band gap as shown in figure 3.

T Conduction Zonduction Conduction
band band hand
5
N Eg0 ¥
E 1 Eg0130ev Eg30 eV
o L
3 Valence
Valence band Walence
hand hand
I etal Setrmiconductor Inzulator

Figure 3 Electronic band structures for different solid states. Reproduced with permission [12]

Table 1 summarizes the bandgap for different types of inorganic and organic semiconductors [2].

Table 1 Bandgap for different semiconductors.

Name Bandgap(eV) Name Bandgap
Silicon 1.1 Polyacetylene 1.7
Germanium 0.7 Polypyrrole 3.2
Cadium Sulfide 2.5 Polythiophene 2.0
Zinc Oxide 3.3 Polyparaphenylene 35

Note the conductivity of these semiconductors is dependent on the formation of the mobile
charge carriers, which is how the orbitals are filled. When the orbitals are filled, there is no

3

www.manaraa.com



movement, and hence it is in an insulating form. On the other hand, when there is a movement of
electrons from the VB to the CB for conjugated polymers, electron holes are created. They do
not delocalize the polymer, but there is a distortion happening in the lattice, which is best known
as a polaron (radical cation). This energy created lies between the CB and VB, and this radical

cation carries a % spin and a negative charge.

i
A n
c
L ¢
n
e
a Polaron Bipolaron Bipol: —
s g energy energy blp?[ aron
i y levels levels ands
n ———
g
Dedoped Lightly doped Heavily doped
polymer polymer polymers

Energy levels in conduction band

D Energy levels in valence band

Figure 4 Polaron/bipolaron formation in conducting polymers. Reproduced with Permission [2]

When a second electron (e") is removed or added to the chain of a pre-existing polaron, a
bipolaron is created due to the reduction in dimerization parameter. This dimerization can tend to
reduce the total energy. The presences of these polarons/bipolarons are dependent with the
doping level in conjugated polymer. When a high dopant is used, the polarons/bipolarons overlap
with the dopant ion, which causes the overlapping of VB and CB. Figure 4 shows the formation

of the polaron/bipolaron band before and after doping the polymers [2].

Figure 5 shows the properties and applications of polymers in different states from insulator-

semiconductor-conductor states. There is a relationship between the properties of the polymers

4
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and the application in which it has been used. For instance, semiconductor polymers can be used
as Schottky rectifier, field-effect resistors, or light-emmiting diode solar cells. On the other hand,
conductor polymers can be used as an electromagnetic interference shielding or a microwave
absorbing material. Then the doping/de-doping process, which goes from insulating to
conducting, can create a color change, which can be used for the application of electrochromic

devices.

Conductor

4

Electromagneticinterference shielding
Microwave absorbing materials

Conductive textiles

Doping
Insulator == o Conductor

De-doping

Schottky rectifier
Field-effect resistor
Light-emitting diode

solar cell

4

Semiconductor

Rechargeable batteries
Suppercapacitors

4

High conductivity
reversible redox

Conducting polymers

Insulator Semiconductor  Metal

Conductivity

Drug-releasing agents
Gas separation membrane
Chemical or biochemical sensors

il |

Sensitive conductivity with
doping/de-doping process

Figure 5 Properties and application of conductive polymers. Reproduced with permission [3]

1.2 Polyacetylene

Polyacetylene (PA) were first synthesized by Natta et al in 1958 and resulted in a black powder
[15]. In 1974, it was further studied and proven PA had a strong mechanical property [16]. In
1977, Chiang and al further researched the synthesized polymer by Hirakata et al. and increased
its magnitude by an order of 13 by doping it [17]. Different dopants can be used to synthesize

PA, such as p-type dopants, which increase the conductivity by high order of magnitude similar
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to the one exhibited by metals such as copper [18]. Some of these dopants are bromine, iodine,
and arsenic pent fluoride. However, n-type dopants (e.g. lithium and potassium) can also be
used, but the conductivity of the polymer doesn’t increase significantly [19]. PA advantages are
its simple molecular structure, abundant materials necessary for its synthesis, and its high
conductivity using different dopants. However, PA exhibits defects with its ©= bonds, which
makes it very hard to control its synthesis. Moreover, PA does not display reversible
transformations like other conjugated polymer (PT, PPy, and PANI), because it is sensitive to
H,O and O,. Also, some drawbacks of PA are its insolubility [20]. Due to these many
drawbacks, PA has no commercial use, and scientists have given more importance towards

efficient polymers.

Figure 6 SEM images of doped PA films. a)H,SO, b)BiCl,. Reproduced with permission [21]

Figure 6 shows the morphology of PA films doped with H,SO, and BiCl,. The film was prepared

by using the method done by Ito et al. [16]. The film, for both dopants, shows similar

morphology, which corresponds to a fibrillary shape [21].
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Figure 7 shows the cyclic voltammetry of polyacetylene in 1M LiClO, at a scan rate of 50 mV/s.
The PA film exhibits one anodic and one cathodic peak. The peaks are symmetrical; however,

the cathodic peak of PA is much smaller and broader than the one displayed by the anodic peak.

l | |
2:5 3-35 4.2

Figure 7 CV of 1.1 ng of (CH) in 1M LiClO,4 at 50 mV/s (dashed line) background scan.
Reproduced with permission [21]

1.3 Polypyrrole

Polypyrrole (PPy) was discovered in 1963 by Bolto et al. as a conducting polymer with great
electrical properties [22]. It was in 1983 that Diaz and Hall have synthesized PPy, making its
conductivity in the semiconductor range [23]. By oxidizing the monomer pyrrole, one can obtain
a black powder. Doped PPy films can display a dark blue or black color depending on many
factors, such as the degree of polymerization and the thickness of the film obtained. The lightly
doped polypyrrole has a lime green/turquoise color, and the undoped polypyrrole has a light
yellow color. The bandgap E4 of PPy is around 3.2 eV. If the bandgap has a value larger than 3
eV, the polymer will display a transparent color [24]. PPy is one of the most electrochemically
synthesized polymer, especially amongst heterocyclic conjugated polymers [25]. It has the

unique property of being synthesized using an aqueous solution. Polythiophene and polyaniline
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do not share the same property. Thiophene is synthesized from an organic solvent, and aniline
requires an acidic medium [13]. However, the polymerization of PPy has nucleophile sensitivity
in the surface of the electrode. Some of the poor nucleophilic solvent that can be used are
acetonitrile, propylene carbonate, methylene chloride, and tetrahydrofuran [26]. PPy can also be
synthesized in nucleophilic solvents, but a pyrotic acid has to be added in the electrolyte to
decrease the solvent’s neucleophilicity. Some of these solvents are dimethyl sulfoxide and

dimethyl formamide. PPy conductivity can range from 10%-10° S/cm [27].

‘
SEMHV- 30.00 kv WD 7.637 men VEGAW TESCAN
View fabad. 21.74 um Dot SE

BEM MAG 9.97 kx Date(muddy): 010808

Forformance In nanospece n

Figure 8 SEM images of polypyrrole thin film. Reproduced with permission [28]

The morphological structure of a 1 um PPy thin film consists of 3D structure with negligible
crystallinity, and it contains a globular-like shape, as shown in figure 8. The thin film was
deposited electrochemically using a three-point electrode on a platinum rotating disk in 0.1M of

LiBF,.

It can be used as a biomaterial for the application of biomedical implants. Also, PPy can be used

as an antistatic coating for corrosion protection in rechargeable batteries, gas sensors, Schottky

diodes, and electrochromic displays [29]. However, disadvantages of PPy are its low mechanical
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strength, making it a fragile material, and its limited solubility in most of the organic solvents

[30].

The cyclic voltammetry for 1 um PPy thin film in an electrolyte consisting of 1M lithium
perchlorate (LiClO,) is displayed in figure 9 at two different scan rate of 10 mV/sec and 20
mV/sec. PPy undergoes a redox reaction with one anodic and one cathodic peak. The thin film
displays an electrochromic behavior from a dark brown to a light yellow. The cyclic

voltammetry, however, is not symmetrical, but displays a quasi-reversible behavior.
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Figure 9 Cyclic voltammetry for 1 um PPY in 1M LiClO,4. Reproduced with permission [31]
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1.4 Polythiophene

Polythiophene (PT) was discovered and chemically synthesized in the 1980s by two groups
(T.Yamamoto et al. and J.W.P Lin et al.) [32, 33]. PT has excellent electrochromic properties. It
displays a dark blue color when heavily undoped, purple when lightly doped, and red when
undoped. It has a bandgap of E4=2.0 eV [24]. Depending on the dopant used, the conductivity of

PT can reach up to 1000 S/cm [34]. PT shares the same characteristic as PPy, as it is a
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heterocyclic polymer. It contains a heterocyclic four members with sulfur atom [35]. It is
insoluble even if a small concentration is used in THF. It has a very limited range of solvent that
can be used, such as a mixture of arsenic trifluoride and arsenic pent fluoride [36]. PPy and PT
both show porous properties. lodine doped PT has been found to have the highest conductivity

[35]. Moreover, It has been found that PT doped with FeCls increases crystallinity [37]

PTs are regarded as the most thermally and environmentally stable conjugated polymer. Their
application can go from electrical conductors, LEDs, smart windows, sensors, antistatic coatings,

biomaterials, and nanoswitches [38].

/Tcpclilion of c)‘clc\
=N UNN = 1Y

0.08 M FeCly in @

0.3 Mthiophene double distilled
in acetonitrile

solution

water

(a) (b)

Figure 10 SILAR method for PT film deposition. Reproduced with permission [39]

Patil et al. work has been studied to understand the properties of polythiophene [39]. The thin
film was deposited on a glass substrate using the successive ionic layer adsorption and reaction
method (SILAR), which is a simple and inexpensive technique for film deposition. Figure 10
shows the schematic of this method for creating a PT film. The substrate was dipped for 20
second in a solution consisting of 0.3 M of thiophene in acetonitrile solution (cation precursor,

where the adsorption of thiophene on the glass substrate occurs), and then was dipped for 10 sec

10
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in a solution containing 0.05M of FeCls in DI water. The FeCl; is an oxidant (ionic precursor,

and the thin film darkens to a dark red color).

To understand the morphology of the PT films, the SEM images were studied as shown in figure

11, PT films have a uniform surface with some coalesced grains randomly distributed.

0.0020

0.0015

0.0005
0.0000 4

=0.0005

Current density (Afem?)

-0.0010

=0.0015

20 5 -0 45 0.0 405
Voltage(V/ISCE)
Figure 12 CV of PT thin film in 0.1 M LiClO,4. Reproduced with permission [39]
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Finally, the cyclic voltammetry from the same paper was studied to understand the
electrochemical properties of PT films as shown in figure 12. The electrolyte used was 0.1
LiClO4 in propylene carbonate. The voltage range was from -1.6 to 0.4V/SCE. The peaks are
barely noticeable at higher scan rates; however, when the scan rate decreases, a redox peak is
noticeable at 20 mV/s and 50 mV/s. Also as the scan rate increases, the potential increases as

well.

1.5 Polyaniline

1.5.1 Introduction to Polyaniline

Polyaniline (PANI) is an organic semiconductor discovered in 1834 by Runge and was known as
“aniline black™. It was further researched by Letheby who discovered the ability of aniline to
produce a blue substance [40]. It was until 1912 that Green and Woodhead discovered the
different forms of aniline from insulating to conducting [41]. Polyaniline is also known as a

synthetic polymer. Figure 13 below is the general formula of polyaniline [12].

Figure 13 Polyaniline general formula. Reproduced with Permission [12]

The doping of the polymer involves electron and proton transfer. Polyaniline has three different
oxidation states [42, 43]. From figure 13:

e y=1 corresponds to leucoemeraldine, which is the fully reduced form of undoped PANI.

e y=0.5 for emeraldine, which is the intermediate oxidation state of PANI.

12
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e y=0 for pernigraniline, which is the fully oxidized form of undoped PANI.

Table 2 below summarizes all the six different forms of PANI from base to salt [44]. These

forms change depending on the protonation and the oxidation mechanism of PANI.

Table 2 Different forms of PANI. Reproduced with Permission [44]

Polymer

Oxidation state

Color

Electrical
Conductivity

Leucoemeraldine salt

Unoxidized
protonated polymer

Transparent yellow

Insulator- 10 Scm™®

Leucoemeraldine base | Unoxidized Yellow Insulator-10"% Scm™
deprotonated polymer

Emeraldine base Partially oxidized Blue Insulator-10"** Scm™
deprotonated polymer

Emeraldine salt Partially oxidized Green Conductor<10™-10°
protonated polymer

Sem™>

Pernigraniline base Fully oxidized Violet Insulator 10" Sem™
deprotonated polymer

Pernigraniline Salt Fully oxidized Violet Insulator 107 Sem™

protonated polymer

PANI shows ease in synthesis at low cost, and possesses excellent conductivity, electrochemical

and optical properties. Besides, PANI is environmentally stable and thermally stable. PANI is

unique for the fact it can change into a non-conducting state of emeraldine and pernigraniline

with change in electronic structure by simply treating it with various chemicals. This

13
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transformation can be done by introducing electrons in the PANI structure and reducing the N

atom, removing the polaron-stabilizing acid.

Polyaniline can be synthesized using several methods. This thesis concentrates on two different
synthesis methods which are electrochemical [2] and chemical polymerization [45]. Both these
methods consist of an oxidative polymerization of the monomer (aniline) in an aqueous acid
(hydrochloric acid). As a result, an oligomer is formed, which is oxidized again to form a

polymer chain.

Electrochemical deposition involves the polymerization of the monomer in an electrolytic
medium. A three point electrode is used. The set up consists of a counter electrode (platinum), a
reference electrode (Ag/Ag chloride electrode), and a working electrode (ITO or FTO glass
slide). The polymerization can be carried out using a potentiostatic, potentiodynamic, or
galvanostatic method [46]. The only difference is that the redox driving force in electrochemical
doping is provided by an external voltage source; whereas, chemical oxidation utilizes oxidants
to precipitate the chemical reaction [38, 47]. For chemical polymerization to occur, an oxidizing
agent has to be incorporated within the acidic medium. In this case, an oxidant (ammonium
peroxydisulfate-APS) is used in the chemical polymerization; its oxidation potential is Eq=1.94
V. Cation radicals are formed by the oxidation of the monomers produced by APS. These
radicals react with other monomers, which results in the creation of oligomers (insoluble
polymers). One of the advantages of chemical synthesis is its capability to produce bulk
quantities of thin films. On the other hand, the disadvantage is a narrow range of chemical

oxidants available for the purpose of chemical polymerization [46].

14
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1.5.2 Polymerization Mechanism

This section is covering a general mechanism of polymerization of PANI. PANI’s structure
involves irregular nitrogen groups and phenyl rings. This structure creates a zigzag pattern,
where a 7 electron cloud surrounds the pattern. The polymerization process starts by an electron
transfer of the aniline nitrogen atom as shown in figure 14. This transfer forms a radical cation in

the polyaniline conjugated polymer [48].

* + + + +

NH, NH, NH, NH, NH,

i _ e - i @ @ @
L]

Figure 14 Structure of the electron transfer of the aniline nitrogen atom. Reproduced with
permission [48]

+a + + +
NH, + = NH; — M MH,
H, .

l- H*
H .
N NH,
l. H*
rearrangement [E
NH NH, ¢———— N NH

dimer

i_ E-
+a - + +u
NH NH,—————» NH NH,

Figure 15 Reaction of the radical cation to form the radical dimer. Reproduced with permission
[48]
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The formed radical cation reacts with its resonant form in a “head to tail” manner, which forms
an oxidized radical cation dimer (figure 15). The polymerization ends by the creation of a
trimmer, which is the result of the reaction of the formed radical with the radical monomer or
dimer. The above step keeps on following the same pattern until a long chain of PANI is formed

as shown in figure 16.

@ ﬁ@mw ®= zmmmmr@ _@_ @

polymer €«———— s+ 4— tetramer
Figure 16 Schematic of the formation of polyaniline. Reproduced with permission [12]

1.5.3 Properties of Polyaniline

1.5.3.1 PANI Switching Properties and Electrochemical Properties

PANI exhibits color switching properties when undergoing a redox reaction. Figure 17 shows
these color changes for a PANI thin film. The experiment was done by oxidizing PANI at 1 M
HCI. PANI has a pH dependency for each of the oxidation states of PANI. This dependency is a

result of the addition of an acid or base when the emeraldine salt is formed.

16
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Figure 17 Cyclic voltammetry of PANI thin film on platinum in 1M Hcl at a scan rate of
100mV/s. Reproduced with permission [12]

When in reduction state, PANI thin film exhibits a yellow color to transparent as shown in figure
18a, which corresponds to the state of leucoemeraldine. The green color (emeraldine salt) (figure
18b) is noticed when the film is undergoing oxidation. Polyaniline hydrochloride converts to a
non-conducting blue emeraldine base (EB), which is considered the most applicable form of
PANI. This form is obtained when treated with ammonium hydroxide. When the temperature
reaches its maximum, the emeraldine base converts to a conductive green emeraldine salt (ES).
The ES form of PANI has the highest conductivity (similar to a semiconductor) amongst other
forms of PANI. Figure 19 shows these same properties for the dye incorporated thin films.
Figure 19a and b shows the switching properties for the Rhodamine B/PANI film and

PANI/Prussian Blue film consecutively.

17
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a) b) ©)
Figure 18 PANI undergoing cyclic voltammetry. a) PANI in the reduction state b) and c) in the
oxidation state

b)
Figure 19 Different states of dye incorporated films. a) redox reaction of rhodamine B/PANI b)
redox reactions of prussian blue/PANI

1.5.3.2 Electrical Properties and Optical Properties
PANI has an electrical property that can reversibly be controlled by charge transfer doping.

PANI has an electrical conductivity between 10™° and 10% ohm [48]. Figure 20 shows the band

18
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gaps for each redox states of PANI [49]. Emeraldine salt has three characteristic bands at 330
nm, 430 nm, and a broad band at 800 nm. The 330 nm is due to =7 transition, 430 nm is due to
n-polaron band, and the wide 800 nm is due to the = -polaron /bipolaron band. The emeraldine
base state of polyaniline exhibits a n=-x_ band at 600 nm, which is due to charge transfer that
occurs between the adjacent imine-phenyl-amine and the quinoid ring. The maximum absorption
is around 2.1 eV; as for pernigraniline base, it is around 2.3 eV with two bands at around 320 nm

and 530 nm corresponding to 7-nband and Peierl band gap consecutively [50].

a(VB) a (Polaron band)

A T - 7 - A\ - T
= .-' Ty
< a < ..+_.

l

2 vy

—
-7 L

-7 5 e

AR
Tt -

Lencoemeraldine base Polyemeraldime salt Permgraniline base Polyemeraldme base

rt
1T

LG

b

Figure 20 Band gap for different redox state of PANI. Reproduced with permission [49]

1.5.3.3 Morphology of Polyaniline

Polyaniline has a different morphology than the one observed by other polymers. It consists of a
rod-like morphology, where the rods diameter is around 500 nm as shown in Figure 21 [28]. The
rod-like structure is dependent on the concentration of polyaniline. This similar morphology was

not observed when a low concentration of PANI was used.
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Figure 21 SEM images for polyaniline thin films. Reproduced with permission [28]

1.5.4 Applications of Polyaniline

PANI has been used for antistatic coating [51], electrodes in batteries [52],and electrochromism
[53]. These are couple of applications for polyaniline

e supercapacitors (as a nanofiber composites of Graphene/Polyaniline) [54]

e Datteries (PANI used as an anode) [55]

e Dbiosensors (PANI as an electrochemical biosensor for detecting biological compounds) [8]

e corrosion (used for corrosion prevention) [56].

1.6 Electrochromism

Electrochromism is the phenomenon of reversibly changing color displayed by a material upon
reduction or oxidation, when placed in an electric field. In the later 1960s, it was found that
transition metal oxides have the capability of reversibly changing colors[57]. Since PANI shows
excellent color transition, it is an excellent electrochromic material, as it transitions from yellow-

green to dark blue. An electrochromic device (ECD) can be created by sandwiching two
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electrodes (polymer electrodes) together with an electrolyte in between (mostly an acidic
medium), and applying a potential across as shown in figure 22. The polymer based ECD can
consist of one electrode made of PANI and the other made of poly(3,4-
ethylenedioxythiophene)(PEDOT) conducting polymer, or a simple polyaniline

/electrolyte/conducting 1TO glass plate.

PANI Thin Film
_7

__Flectrolyte

| . FTO Glass

| PEDOT Film

Figure 22 Electrochromic device consisting of PANI/PEDOT.

ECDs have many applications. It can be used as a reflective electrochromic device by self-
darkening to allow better vision for the driver in the night vs. the morning. It can also be used for

sunglasses , visors, and energy application in smart building windows.
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CHAPTER 2. CHARACTERIZATION AND ELECTROCHEMICAL TOOLS

2.1 Characterization Tools

2.1.1 UV-Spectroscopy

UV spectroscopy is the measurement of the absorption of the beam of light when it passes
through a substrate, or it can be a measurement of reflectance, where the beam of light is
reflected at the sample’s surface. It is used to study many characterization techniques such as
absorption, transmission, and reflectivity of various materials; as well as studying the optical and
electronic properties of materials. The spectral region of the UV/Vis is in the visible UV and
near infrared. The perceived color of the chemical is affected when there is an absorption in the
visible range [58]. V530 Jasco Spectrophotomer (figure 23) was used to extract the UV spectrum

of the polyaniline films.

Figure 23 UV/Nis spectrophotometer.
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2.1.2 FTIR

Fourier transform infrared spectroscopy is a technique used to determine and measure the
absorption of light in the infrared spectrum at each wavelength. It can also be used as a
quantitative technique to identify unknown materials, and the amount of components in a
mixture. The spectrum results in certain absorption peaks, which are frequencies from vibrations
of the bonds of the atoms. The size of the peaks provide us the amount of each material present
in the substrate [59]. Perkin Elmer Spectrum One FTIR spectrometer was used in both
transmission and reflection mode, to understand the doped polyaniline films, dye doped, or

composite polyaniline films (figure 24).

Figure 24 FT-IR spectrometer.

2.1.3 SEM
Scanning Electron Microscope (SEM) is the tool used to study the microscopic structure of the
different samples. It is the most used electron microscope. The image is obtained by scanning the

surface of the sample using a focused electron beam [60]. The most attractive feature of SEM is
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its 3-D image, which is due to the large depth of field. The SEM depth of field can reach up to a
magnification of 10°. The Ultra-high Resolution SEM SU-70 Hitachi was used as shown in

figure 25.

Figure 25 SU70 Hitcha scanning electron microscope instrument.

2.1.4 XRD

X-Ray diffraction is a method used to determine the material’s crystal structure. As such, the
chemical compounds could be extracted. The instrument used was an x-ray diffractometer with
an electromagnetic radiation with a short wavelength. XRD works by measuring the diffraction
intensity by varying the incident angle of the beam [60]. Analytical X Pert XRD instrument was

used for all the samples used in this thesis as shown in figure 26.
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Figure 26 XRD instrument- Analytical X’Pert.

2.1.5 1-V Characteristics

a) b)

Figure 27 Experimental set up for extracting polyaniline’s electrical properties.

The electric properties of polyaniline were extracted by studying the linear potential method

using the Voltamaster software. As such, a current density vs. voltage plot was obtained. Two
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setups were used using a two point electrode: a lateral connection and an across connection.
Figure 27 shows the two different type of setups. Figure 27a) consists of a uniform polyaniline
film where two copper foils were taped at a distance of 0.5 cm of each other. Figure 27b)

consists of one copper tape on PANI, and the other tape was on the FTO (without PANI).

2.2 Electrochemical Tools

2.2.1 Cyclic Voltammetry

Cyclic voltammetry (CV) is a potentiodynamic technique, where the working electrode is
ramped linearly and is inverted when a specific potential is reached. The cyclic voltammetry is a
function of time. CV can be used to study a various range of electrochemical reactions. The three
point electrode method was used, with Ag/AgCl as a reference, FTO as working, and platinum as
counter electrode. The current flow through the working electrode was measured, and the
potential is acquired by computing the current against the reference electrode. On the other hand,
the counter electrode is used to finalize the electrical circuit for the current flow [61, 62].
Furthermore, Randles- Sevcik equation was used to calculate the diffusion coefficient using the

following equation [63]:

ip = 268,600z ADCv'/?
I,= maximum current in amps
n= number of electrons transferred in the redox event
A= electrode area in cm?
F= the Faraday constant in C mol™

D= diffusion coefficient in cm?/s
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C= concentration in mol/cm®

vy =scan rate in V/s.

Voltaltals

B - P

Figure 28 VoltaLab instrument for CV and CA measurements.

VoltaLab PGZ301 instrument was used to study the cyclic voltammetry as shown in figure 28.

2.2.2 Chronoamperometry

This electrochemical technique provides the current from a faradic process, which occurs at the
electrode as a function of time. The signal is given as a stepped pulse as the potential at the
working electrode is given at a constant value Ey, then increases instantaneously at a new value

E; [62]. Again, VoltaLab PGZ301 was used to study the chronoamperometry (CA).

2.2.3 Electrochemical Impedance Spectroscopy
Electrochemical impedance spectroscopy (EIS) is a tool used as a characterization technique of
the dynamics of an electrochemical process [64]. It has many applications in corrosion [65],

plating [66], batteries [67], etc. It works by studying the response of the system as a function of
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the frequency [68]. For the Electrochemical Impedance Test, Gamry Reference 600 was used

(figure 29).

- -

w2

Figure 29 Gamry instrument for electrochemical impedance spectroscopy.
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CHAPTER 3. SYNTHESIS AND CHARACTERIZATION OF PANI

3.1 Synthesis

The film used was deposited using the process of self-assembly. Three films were made:
polyaniline with 1 layer, 2 layers, and 3 layers. For multiple layers, the film was rinsed with HCI
and dipped again to go through a self-assembled film formation. Self-assembly is a process
defined as the spontaneous organization of molecular units without external direction, which
creates a self-assembly monolayer (SAM). These molecules adsorbs on the substrate
spontaneously to form a thin layer [69]. Throughout my research, many deposition techniques
have been used (solution casting, vacuum deposition, etc.); however, in-situ self-assembly has
provided me with the best PANI film displaying a uniform layer. Before depositing the PANI
film, the FTO glass is dipped in a poly(styrene sulfonate)(PSS) for 24h. PSS is used to enhance
the polymerization of PANI, due to its negative charge. To oxidize this polymer, we mix aniline
with APS in an acidic aqueous medium (HCI). A mixture of 0.2 M of with 0.25 M of APS in 0.2
M of HCI is dissolved in 50 mL of DI water at room temperature [45]. Figure 30 shows the
oxidation process of the aniline in a medium containing HCI and APS, which results in the
formation of emeraldine. When all components are dissolved, a glass support with an area of 6
cm? is inserted into the mixture. The non-conductive side of the glass was taped allowing the
film to only form in the conductive side of the glass. There is a short induction period, where the
mixture is colorless and the temperature stays the same. When the oligoaniline radicals are
created, the mixture turns into a dark blue color. These oligomers start adsorbing themselves at

the surface in contact with the aqueous mix.
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4n @—NHE.HCI + 5 (NH,),S,0,

aniline hydrochloride ammonium peroxydisulfate

@ - -
NH N NH NH
ci® c® "
polyaniline hydrochloride (emeraldine salt)

+ 2nHCl + 5nH,80, + 5n (NH,),S0,

Figure 30 Oxidation of aniline in a medium containing HCI and ammonium peroxidisulfate.
Reproduced with permission [48]

This initiates the formation of the first PANI chain, which produces the nucleus of the next film.
This is known as the polymerization of aniline. The temperature is at its maximum when the
mixture turns into green emeraldine, which is known as the emeraldine salt. The film is then
spread on the substrate to form an emeraldine form of PANI [70]. Figure 31 shows the schematic
of the PANI thin film deposited on the FTO glass substrate. After polymerization, the film is

removed from the solution, rinsed with HCI, and dried with N,.

PANI

P55

Fluorine Tin Oxide

Glass

Figure 31 Schematic of the film deposition of in-situ self-assembly of polyaniline films.
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3.2 Characterization

3.2.1 UV Spectroscopy

Figure 32 shows the UV spectroscopy of different layers of PANI. The graph displays two
maxima located at wavelength at approximately 330 nm and 768 nm. The absorbance for each
film has been summarized in table 3. The thickness was extracted using the following equation
A(peak)*(M/2). The peak at around 336 nm is due to n-* transition, and wide peak at around 820
nm is due to the presence of the dopant. There is an increase in the absorption magnitude as the

number of monolayers increases.

0.5 1=1 layer PANI
) 2=2 layers PANI
0.45 - 3=3 layers PANI

0.35 -
0.3 - 7
0.25 -
0.2 -
0.15 -
0.1 -
0.05 -
0 : . : . . .

320 420 520 620 720 820 920

Wavelength [nm]

Absorbance

Figure 32 UV spectra of different layers of PANI.

Table 3 Calculation of PANI thickness for different layers.

AMnm) | AM2(nm) | A(V) din
nm
1 layer | 403 201.5 0.1 20.15
2 336 168 0.27 45.36
layers
3 336 168 0.4375 | 735
layers
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3.22 FTIR
Figure 33 shows the FTIR spectra of different thicknesses of polyaniline films. The small peak at
1340 cm™ is due to the dopant present while the film is synthesized using the self-assembled

technique.

VN WAV~

1=1 layer PANI
2= 2 layers PANI
3= 3 layers PANI

3400 2900 2400 1900 1400 900 400
Wavenumber [em™]

Figure 33 FTIR spectrum of different thickness polyaniline thin films.

Table 4 shows the characteristic peaks of different layers of PANI thin film.

Table 4 Characteristic peaks of different layers of PANI thin film.

cm’ N-H C-H c=C c=C C-N C-H
stretching | stretching | stretching | aromatic | stretching | bending

aromatic | compound vibrations
nuclei

1 Layer PANI | 3224 2916 1577 1491 1307 1151

2 Layer PANI | 3219 2912 1574 1488 1304 1137

3 Layer PANI | 3232 2926 1582 1501 1297 1145
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3.2.3 Morphology of PANI Films

Figure 34 shows SEM images of different layers of PANI deposited on FTO glass. The film
containing one layer (figure 34a) has a compact PANI layer deposited on the electrode’s surface.
As the thickness increases, a fiber-like PANI is formed around the particles (figure 34b). In
figure 34c), the porous fiber PANI has covered most of the thin films’ surface. This can be

explained by having polyaniline and its oligomers simultaneaously deposited on the substrate.

layers PANI.

3.2.4 XRD
Figure 35 shows the XRD pattern for the PANI films with different thicknesses. The peaks occur
at 20 =27°, 38° 52° 62° and 66°, which corresponds to the crystallinity of FTO. The XRD

pattern does not, however, provide any trace for the PANI films [71].

Since, the peaks did not show on FTO glass. Polyaniline was deposited on silicon wafers. No
peaks were present for 1 and 2 layers. The reason for the absent peaks is due to the amorphous

behavior the polymer is exhibiting, which is in accordance with literature [72].
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Figure 35 XRD of different layers PANI thin films on FTO.
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However, figure 36 shows the XRD peaks present for 3 layers PANI film, which is due to the
polycrystalline structure of the thicker thin film. From literature [73], crystalline silicon exhibits
three peaks at around 20=28.1°, 47.4°, and 56.2°. The peaks of silicon are narrower than the one
exhibited by PANI/Si, hence it can be concluded that the particle size decreases when PANI is
deposited on the Silicon. From XRD measurements done in figure 36, there are three peaks
which corresponds to the to the PANI thin film at 26= 12.8°, and 18.2°. Moreover, the film
deposition of PANI did not change the crystallinity of the silicon wafer. Note that similar method

of in-situ self-assembly deposition was used to coat the silicon wafers.

3.2.5 1-V Characteristics

For the lateral set up, all samples studied exhibited Ohmic behaviors. Figure 37 shows the results
of the current density vs. voltage for 1 layer polyaniline in the “across” set up. The film
represents a nearly ohmic behavior for higher scan rate. However, for lower scan rates, there are

some disturbances seen during the higher voltages in both the forward and reverse bias.

10 -

8 - Scan rate:
1= 10 mv/s
6 4 2=20mV/s
3= 50 mv/s
4 4 4= 100 mv/s

| —"

Current density [mAfcem?)
=

-800 -600  -400  -200 0 200 400 600 800 1000 1200
Potential [mV]
Figure 37 Current density vs. potential for 1 layer PANI/across.
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Figure 38 represents the current density vs. potential for 1 layer PANI in the lateral position. The
film has an Ohmic behavior for the entire scan rate due to asymmetric charge transfer from the

polyaniline contact with the copper metal.

ﬁ =
Scan rate:;
40 - 1= 10 mv/s
2= 20 mvfs
L 30 3= 50 mvs 2
E 20 - 4= 100 mV/s
= 1
E 10 -
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Figure 38 Current density vs. potential for 1 layer PANI/lateral.

1=1 layer PANI
2=2 layers PANI
3=3 layers PANI

Current density [mA/cm?]

-60 T T T 1
-0.8 -0.3 0.2 0.7 12
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Figure 39 Comparison of different thicknesses of PANI/lateral at 50 mV/s.
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Figure 39 compares the current density vs. potential for different PANI thicknesses at room

temperature. The conductivity of the thin film increases with increasing film thickness. FTO

creates an Ohmic behavior to PANI, which corresponds to a P-type semiconductor.

The ideality factor (n) was calculated by plotting In(l) vs. voltage, and the slope is equal to g/nkT

where:

k (Boltzmann constant)= 1.3806488*10° JK™*

q (electric charge)= 1.6021765*10™° C
T=room temperature

solving for the ideality factor, n

Table 5 The ideality factor for different PANI thicknesses.

1 layer PANI

22.15233009

2 layer PANI

30.17832735

3 layer PANI

8.483822155
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CHAPTER 4. DYE INCORPORATION

4.1 Introduction to Dye Incorporation

In order to expand the color spectrum of these thin films, two dyes were incorporated:
Rhodamine B and Prussian Blue. Rhodamine B is a red fluorescent dye that is soluble in water. It
is mainly used to trace water for rate flow determination [74]. Recently, it has been used as a
main component for the dye-sensitized solar cell based of polyaniline electrodes [75].

Rhodamine B has the molecular formula of C,gH3;CIN,O3[76].

Prussian Blue, on the other hand, is a dark blue dye of the hexacyanoferrate family. Its molecular
formula is CigFesNig. Its main application is used as an antidote for metal poisoning in the
medical field [77]. As such, it has been used with polyaniline as an amperometric biosensor for

detection of uric acid [78].

4.2 Synthesis- Electrochemical Deposition

Electrochemical deposition was used to make a polyaniline thin film with Rhodamine B dye. The
electrodeposition was carried in a three point-electrode cell, which consisted of a fluorine doped
tin oxide (FTO) coated glass slide, with a surface resistivity of 10 €/sg. as a working electrode.
The reference electrode consisted of an Ag/AgCI electrode, and the counter electrode was a
platinum wire. The area of the working electrode was 4 cm?. The resulting film was achieved by
a chronoamperometry synthesis of 1M HCI+0.2 M PANI+0.00125 M Rhodamine B dye

electrolyte.

38

www.manaraa.com



For PB, the deposition was obtained by cycling the potential from 0.6 V to 0.2 V at 100mV/sec

[79]. The 2 layer PANI thin film was dipped in a three point electrode similar to the previous

electrodeposition in an electrolyte solution consisting of 0.25 M KHSO,4 0.0005M of

KsFe(CNg)s, and 0.005 M Fey(SO4);. Both dye depositions were done using Voltamaster

software.

4.3 Characterization

4.3.1 UV Spectroscopy

Figure 40 below corresponds to the UV spectra for dye incorporated thin films. The PB/PANI

and RhB/PANI do not exhibit the same peak location, since both utilizes different deposition

techniques and utilizes different dyes. Again, using the peak positions, the film thickness was

extracted. Table 6 summarizes all the results.

0.7 -

0.6 -

0.4

Absorbance

0.3 -

0.2 -

0.1

0.5 -

1=PB/PANI
2= Rhodamine B/PANI

420 520 620 720 820
Wavelength [nm]

Figure 40 UV spectra for dye incorporated PANI thin films.
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Table 6 Calculation of film thickness from UV-Spectra.
A A2 AQ) | d(nm)

PB/PANI 329 164.5 0.43 70.735
Rhodamine B | 356 178 0.58 103.24

43.2 FTIR
Figure 41 below shows the FTIR spectra of dye incorporated films. Table 7 summarizes all
characteristic peaks. There is a characteristic peak in the PB at 2050 cm™, which corresponds to

the Fe-CN stretching mode in the cyanometallate lattice [80].

1= PB/PANI
2=Rhodamine B/PANI

3400 2900 2400 1900 1400 900 400
Wavenumber [em1]

Figure 41 FTIR results of dye incorporated thin films.

Table 7 Characteristic peaks of dye incorporated films.

cm* N-H C-H c=C C=Nin C-N C-H
streching | stretching | stretching | aromatic | stretching | bending
aromatic | compound vibrations
nuclei
PB/PANI 3247 2915 1580 1499 1308 1151
RhB/PANI | 3222 3045 1565 1484 1301 1116
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4.3.3 SEM

In figure 42a, new noticeable particles were on top of the PANI thin film; this can be explained
by PB deposited on the already pre-existing PANI layer. On the other side, figure 42b, porous
PANI fibers were observed, which is due to the high potential range used to deposit PANI on

FTO glass.

SUT0 3C.0kV >x30. Ok SE(1A '1.00.m 81170 40 VY 140 Ok SE(M :
Figure 42 SEM images of dye incorporated PANI films. a) PB/PANI B) RhB/PANI.

4.3.4 XRD
No trace of PANI, Prussian Blue, or Rhodamine show on the XRD results in figure 43. The
peaks occur at the same position as the different layers of PANI, and correspond to the

polycrystallinity of the FTO glass substrate.

As the peaks were not present in the previous method, the dye incorporated films were deposited
on silicon. The XRD measurements are shown in figure 44. No peaks of RB/PANI were
observed since it exhibits an amorphous nature. However, a peak at 26=26" is noticed on the

PB/PANI, which corresponds to the PB nanoparticle.
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1=FTO without PANI
2=PB/PANI
3=Rhodamine/PANI

10

Intensity (counts)

20 30 40 50 60 70
2Theta(®)

Figure 43 XRD of dye incorporated thin films on FTO.
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Figure 44 XRD of dye incorporated polyaniline thin films on silicon.
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4.3.5 Electrical Properties

Figure 45 shows the current density vs. voltage at a scan rate of 10 mV/s for the dye incorporated
thin films. The I-V characteristics of the film exhibit the behavior a normal diode. We can see
that the avalanche breakdown occurs at -500mV to -1000mV for both 1 and 2. The knee point in

the forward bias can be seen at around 1000mYV for both 1 and 2.

1= PB/PANI
20 - 2=Rhodamin/PANI

10 -

Current density [mA/cm?]

=10 1

-20 T T T T 1
-1000 -500 0 500 1000 1500

Potential [mV]
Figure 45 Current density vs. potential for dye incorporated films/across.

2 1 1=PB/PANI

20 4 2=Rhodamine BfPANI

15 A 2
10 +
5 1 1
o
.5 J

=10

.15

-20 o

Current density [mA,/cm?]

-25 r . .
-1000 -500 0 500
Potential [mV]
Figure 46 Current density vs. potential for dye incorporated films/lateral.
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Figure 46 represents the current density vs. the potential for the dye incorporated thin films in the
lateral set-up. Same behavior is displayed here similar to the plain PANI films. The film
represents a nearly Ohmic behavior due to asymmetric charge transfer in the polyaniline contact

with the copper metal.

Using the same method previously discussed in the plain PANI films to extract the ideality

factor, the following values were obtained.

Table 8 The ideality factor for dye incorporated PANI films.
PB/PANI 12.19

RhB/PANI 16.411
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CHAPTER 5. ELECTROCHEMICAL APPLICATION

5.1 Experimental Set-up
To study the electrochromic properties, a three point-electrode cell, with an Ag/AgCl reference
electrode, and a platinum wire counter electrode. The work electrode consisted of PANI thin

films and dye incorporated PANI films as shown in figure 47.

Reference
clectrode —
= Working
— electrode
counter i ]
electrode

Figure 47 Experimental set up to study the electrochemical properties of thin films.

The electrochemical studies were carried in different acids: 1M lithium perchlorate, 1 M HCI,
and 1M sulfuric acids. Furthermore, electrochemical methods were carried using different
electrolytic consistencies: gelatin based electrolyte and polyvinyl alcohol based electrolyte. The

software used was the Voltamaster as described in the previous chapter.
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5.2 Electrochemical Methods

5.2.1 Cyclic Voltammetry

The cyclic voltammograms of the PANI films were recorded at 1 M HCI in three different states:
liquid and semisolid (Gelatin based electrolyte and PVA based electrolyte) for different PANI
films. Figure 48 shows cyclic voltammograms of 1 layer PANI in 1M liquid HCI from 10 mV/s
to 100 mV/s. The redox pairs are assigned as AA’, BB’, and CC’. The increase of the sweep rate
does influence the position of all the potential peaks. The anodic peaks shift towards a high
potential; on the other side, cathodic peaks shift towards a lower potential. Also, at a sweep rate
of 10mV/s and 20 mV/s, the third reduction peak A’ is not noticeable. As the sweep rate
increases, A’ distinguishly gets noticed. Peak A corresponds to the oxidation change of neutral
PANI, and peak C to the oxidation from emeraldine to pernigraniline. For peak B, it can be
explained by the degradation of PANI due to soluble species (benzoquinone and hydroguinone)

[81]. One layer PANI shows really good electrochemical reversibility.

Scan rate:
1300 41 1=10mV/s
2=20mV/s
3=50 mV/s
800 4 4=100mV/s

Current density [uA/cm?]

300 -
«-200 4
=700 -
B
-1200 L T T ) ¢ T T
03 -0.1 0.1 03 0.5 0.7 0.9

Potential [ V]
Figure 48 Cyclic voltammetry for 1 layer PANI in 1 M liquid HCI.
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5.2.1.1 Comparison to Different Acids

Figure 49 shows the cyclic voltammograms of 1 layer PANI in 0.1 M lithium perchlorate
electrolyte. Both of the anodic and cathodic peaks are absent. Figure 50 shows the cyclic
voltammograms for 1 layer PANI in 1 M sulfuric acid. Three redox peaks are noticeable for 100
mV/s, 50 mV/s, and 20 mV/s. The voltammetry exhibits the same behavior as the one observed
in 1 M HCI. The increase of the sweep rate does influence the position of all the potential peaks.
The anodic peaks shifts towards a high potential; on the other side, cathodic peaks shifts towards

lower potentials.

1000 -
Scan rate:

800 1 1=10mv/s
— 2=20mV/’s
™~
E 600 3=50 mV/s
U —_
‘:f 400 - 4=100 mV/s
=
Z 200 -
2

1]

g =
T 200 -
1]
L=
5 400 -
O

-600 4

'BDD T T T T T T

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

Potential [V]
Figure 49 Cyclic voltammetry for 1 layer PANI in 0.1 M lithium perchlorate.

Furthermore, HCI compared to lithium perchlorate and sulfuric acid shows a larger potential
difference in the redox peaks, which gives a higher working potential. There is also perfect

symmetry displayed by HCI, which shows a better cyclic reversibility.
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Figure 50 Cyclic voltammetry for 1 layer PANI in 1M sulfuric acid.

5.2.1.2 Comparison to Different Electrolyte Consistencies

Both figure 51 and 52 exhibit three redox peaks similar to the liquid 1 M HCI. However, the BB’

pair in the PVA and gelatin based is barely noticeable comparing to the one exhibited by the

liquid electrolyte. The PVA is also a viscous gel, which doesn’t allow the ion to intercalate with

the polyaniline molecules. So, the figure 51 and 52 do not show the complete oxidation and

reduction process. The increase of the number of layer also decreases the diffusion of the PVA

ion in polyaniline structure. For the anodic peak A and B, both gel and PVA show no increase in

potential when the scan rate increases; however peak C, when scan rate increases, the peaks shift

towards a greater potential. For the cathodic peaks, Peak C’, shows no increase in potential as the

scan rate increases. On the other hand for peak A’, the peaks shift towards a small potential as

the scan rate increases.
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Figure 51 Cyclic voltammetry for 1 layer PANI in 1 M HCI/PVA.
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Figure 52 Cyclic voltammetry for 1 layer PANI in 1 M HCI based gelatin.
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5.2.1.3 Comparison to Different Thicknesses
In figure 53, for 100 mV/s, only two redox peaks are noticeable. On the other hand, for the other
scan rates, three redox peaks can be noticed. As the scan rate increases, the potential shifts

towards a greater potential.

Scan rate: 4
1=10mV/s
2=20mV/s
3=50 mV/s
4=100 mV/s

s

o
A

Current density [mA/cm?)

-5 . . - v . v
03 0.1 01 03 0s 0.7 09
Potential [V]

Figure 53 Cyclic voltammetry for 2 layers PANI in 1 M liquid HCI.

10 -
Scan rate:
1=10 mV/s
2=20mV/s
3=50mV/s
4=100 mV/s

Current density [mA/cm?]

-0.3 -0.1 0.1 0.3 05 0.7 0.9
Potential [V]

Figure 54 Cyclic voltammetry for 3 layers PANI in 1 M liquid HCI.
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As the thickness increases, the peaks become more and more unnoticed (figure 54). As the scan

rate decreases more peaks become noticeable, and the potential shifts towards a smaller

potential.
8 9 scanmte:

~ 1=10mV/s

§ 2=20mV/s < e

3=50 mV/s

E 41 s100mv/s 3
— 2

2

s °] ‘

o

§ 4.

—_

3

’8 T T T T T T
03 -0.1 0.1 03 05 0.7 09

Potential [ V]
Figure 55 Cyclic voltammetry for 4 layers PANI in 1M liquid HCI.
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Figure 56 Cyclic voltammetry for 5 layers PANI in 1M liquid HCI.

To further understand the electrochemical properties of different PANI thicknesses, a 4 layer

PANI and a 5 layer PANI were studied as shown in figure 55 and 56 consecutively. The range of
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the current density is compressed as the film thickness grows, and also, the peaks are less and
less noticeable with an increasing scan rate. The electrochromicity of the films is poor comparing
to the thinner PANI films. Moreover, the same is noticed here with the previous PANI films,
with increasing scan rate the potential is increasing. The thicker film does not allow the faster

intercalation/deintercalation of acid ions with polyaniline films.

5.2.1.4 Comparison to Dye Incorporation
For Rhodamine B/PANI, two redox peaks are noticeable for the scan rate of 100 mV/s as shown

in figure 57; however, as the scan rate decreases, a third redox peak appears.

B -
Scan rate:
1=10 mV/s

E -
— 2=20 mVv{s
E 3=50 mV/s
24 - 4=100 mV/s
.
=
E
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e
c
.2 -
| -
= |
o

- -

'E‘ T T T T T T

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

Potential [V]
Figure 57 Cyclic voltammetry for PANI with rhodamine B dye in 1 M HCI.

The same phenomenon as the thicker PANI films happens here for PB/PANI (figure 58): the
thickness of the film increased, hence the number of peaks displayed are decreasing and are

barely noticeable comparing the PANI with one layer.
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Figure 58 Cyclic voltammetry for PANI with prussian blue dye in 1M HCI.

Table 9 shows the values obtained for the diffusion coefficient calculated using the equation 63

described in Chapter 2 for the different PANI thicknesses.

Table 9 Calculation of diffusion coefficient from the cyclic voltammetry.

n=1
v=20 mV/s
lap(A) ldp(A) Dap(cm®/sec) | Dcp(cm?/sec)

1layer |1 M HCI 0.00154 -0.00203 3.58E-13 6.22E-13
1M H,S0Oq4 0.00971 0.001424 1.44E-13 3.09E-13
0.1 M LiClo4 0.000293 -0.00039 1.31E-10 2.36E-10
1 M HCI Gel 0.001041 -0.00082 1.65E-11 1.04E-11
1 M HCI PVA 0.00143 -0.0011 3.04E-11 1.83E-11
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Table 9 (continued)

2 1M HCI 0.002113 -0.00235 6.80E-11 8.38E-11
layers
1M H,S0O, 3.18E-03 -3.92E-03 1.54E-10 2.43E-10
0.1 M LiCIOq4 0.001061 -0.0014 1.72E-09 2.98E-09
1 M HCI Gel 0.004252 -0.00303 2.76E-10 1.40E-10
1 M HCIPVA 0.005043 -0.0037 3.88E-10 2.09E-10
3 1 M HCI 0.014973 -0.01284 3.42E-09 2.51E-09
layers
1M H,;SO,4 0.00818 -0.00879 1.02E-09 1.18E-09
0.1 M LiCIO4 0.001494 -0.00166 3.40E-09 4.21E-09
1 M HCI Gel 0.00645 -0.00473 3.80E-09 2.04E-09
1 M HCI PVA 0.017576 -0.01399 4.71E-09 2.98E-09
5.2.2 Chronoamperometry
5.2.2.1 Different Acids
0.5 -
04 | 1=IMHCI
2=1M H2504
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"E 0.2 4
3 01 .
E
-E- 0 4 1
g -0.1 4
Q
=
= -0.2 A
Q
= -0.3 4
o
~ -0.4 A
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0 0.5 1 1.5 2 2.5 3
Time sl

Figure 59 Chronoamperometry for 2 layer PANI in different acidic medium.
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5.2.2.2 Different Gel Consistency

PANI film has been studied in two types of gel electrolytes synthesized. The gelatin electrolyte
and polyvinyl alcohol gelatin semi-solid electrolyte has been wused to study the
chronoamperometric studies of polyaniline films. Interestingly, both oxidation and reduction of
polyaniline film at two different gels show similar characteristics as shown in figure 60. The
conductivity of gel plays an important role in transfer of the ion/electron from
electrolyte/polymer films. The films showed similar current densities results; hence the nature of

both studied electrolytes do not does affect the chronoamperometry redox properties of the films.

0.5 ~
1= Gelatine based Electrolyte

2= PVA based electrolyte
0.4 -

0.3 A
0.2 4

0.1 A

Current density [mA/cm?]

-0.1 A

o 0.02 0.04
Time [s]

Figure 60 Chronoamperometry for layers PANI in different electrolyte consistencies.

5.2.2.3 Comparison to Different Thickness

The chronoamperometric study has been performed for different polyaniline film thickness.
Figure 61 shows the chronoamperometric studies obtained for 1 layer, 2 layers, and 3 layers
PANI. The current density increases as the film thickness increases from 1 to 3 layered

polyaniline film, which is due to the increase of the conductivity of the film.
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Figure 61 Chronoamperometry for different thickness PANI.

5.2.3 Electrochemical Impedance Spectroscopy

EIS was carried in a three-point electrode similar to the one used in CV in an electrolytic cell of
1 M HCI in a frequency range of 100 kHz to 100 mHz. Two graphs were extracted from this
spectroscopy: Nyquist plot and Bode plot. These graphs show a capacitance behavior of the
PANI thin films. Figure 62 shows the equivalent circuit obtained, which corresponds the Randles
cell [66]. Rs corresponds to the resistance of the electrolyte solution calculated between the
reference electrode and the surface of the thin film. The capacitance CPE corresponds to the
capacitance of the thin film. Finally, Rp represents the resistance of the thin film, which changes
with different thickness. Note that the introduction of CPE comparing to a pure capacitance
circuit is more appropriate to describe the AC response of PANI thin film [82]. Table 10
summarizes all the parameters obtained from the best fitting of the equivalent circuit for different
PANI films, which is shown in Figure 62. It can be concluded that the PANI films have a

pseudo-capacitance behavior.
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Figure 63 shows Nyquist plot for 1 layer, 2 layer, and 3 layers, and using equation C=2nf*z)*

from the Bode Plot (figure 64), the capacitance increases with increasing film thickness, because

the material tends to store more ionic charges.

Figure 63 shows Nyquist plot for 1 layer, 2 layer, and 3 layers, and using equation C=(2nf*Z)

—AN

Figure 62 Equivalent circuit obtained from the best fitting.

Rs

CPE

Rp

1

from the Bode Plot (figure 64), the capacitance increases with increasing film thickness, because

the material tends to store more ionic charges.

Table 10 Parameters extracted from the best fitting of the equivalent circuit for different PANI

Sérrr;sr’r.]eters 1 Layer 2 Layer PANI | 3 Layer PB/PANI | Rhodamine
PANI PANI B/PANI

R, (ohms) 145*10° | 130.9*10° 203*10° 7.506*10° | 144*10°

Rs(ohms) 8.492 15.97 15.14 76.57 11.56

Yo=C (F) 47%10° | 12.51*10° 13.96*10° | 18.98*10° | 5.51*107

a 958.3*10” | 967.9*107 957*10° 956*10° | 830.3*10°

Goodness of Fit | 2.519*10° | 554*10° 857.7%10° 1.8*10° [ 11.17*10°
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Figure 63 Nyquist plot for different thicknesses PANI. a)1 layer PANI b)2 layers PANI c)3
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Figure 64 Bode plot for different thicknesses PANI. a)1 layer PANI b)2 layer PANI c)3 layer
PANI.
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Figure 65 Nyquist plot for dye incorporated PANI. a)PB/PANI b)Rhodamine B/PANI.
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Figure 66 Bode plot for dye incorporated a) PB/PANI b) RhB/PANI.

Figure 65 shows the Nyquist plot for RhnB/PANI and PB/PANI. The capacitance of PB/PANI is
higher than the one observed for the different thicknesses of PANI. On the other hand, RB/PANI

has a smaller capacitance than PB/PANI, but a higher capacitance than the one observed with 1
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layer PANI. As mentioned, PB is a metal hexacyanoferrate, which is why it causes the PB/PANI
to have a higher capacitance than the 2 layer PANI film. On the other hand, RB/PANI used a
different deposition method. Rhodamine B certainly decreases the conductivity, but allows better

charge transfer in RB/PANI film.

Note that all the Bode plots show a transition from ideally capacitive at a low frequency range,
which is represented by the straight line at the phase angle of 45°, to resistive behavior at a high
frequency range. The ideally capacitive region can be explained by an ion diffusion in in porous

structure of polyaniline film [83, 84].
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CHAPTER 6. CONCLUSION

Five different films (1 layer, 2 layers, 3 layers PANI, and dyes incorporated films with Prussian
Blue and Rhodamine B) were synthesized, characterized, and investigated their electrochemical
properties. The different thicknesses of PANI were synthesized using the in-situ self-assembly
technique. The dye PB was electrodeposited on 2-layer in-situ self-assembled PANI layer,
whereas Rhodamine B/PANI was deposited on plain FTO glass using electrochemical
deposition. For the 1 layer, 2 layers, and 3 layers PANI, the peaks in the UV spectra was used to
study the electronic properties and calculate the thickness of the films. The UV spectra behavior
of the films was similar with an increase of film thickness; however, the UV-vis spectra of
PB/PANI and RhB/PANI displayed different peak locations, since different deposition
techniques have been used with an incorporation of the dyes. FTIR spectra of polyaniline film
fabricated by self-assembly or electrochemical techniques showed similar characteristics.
However, PB/PANI had an extra peak at 2050 cm™, which corresponds to the Fe-CN stretching
mode in the cyanometallate lattice, due to the presence of PB. SEM images for the 1 layer PANI
showed a compact PANI layer, but as the thickness grew PANI became fiber-like. The same
behavior was noticed for the dye incorporated films. This fiber-like behavior is explained by
having polyaniline and its oligomers simultaneaously deposited on the substrate. XRD results for
1 layer and 2 layers PANI displayed no apparent peaks, indicating its amorphous nature;
however, as the film grew, the thin film exhibited three peaks, which is due to the polycrystalline
structure of the thicker film. Moreover, an extra peak was noticeable in the PB/PANI, indicating

the crystallinity of the dye. Two different set up of 1-V characteristics were studied: a lateral and
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an across set-up. The lateral set-up consisted of taping two copper foils on top of the PANI
films, and the across set up consisted of taping one copper tape on PANI and the other on glass.
It was noticed that the I-V characteristics for the lateral set-up and across set-up showed a nearly
Ohmic behavior. It was shown through cyclic voltammetry that 1 layer PANI showed the fastest
electroactive switching and reversible properties from transparent to dark blue in 1 M HCI
compared to other PANI thicknesses for the same potential range. This is due to the fact that the
increase in number of layers decreases the rate of intercalation/deintercalation of acid ions with
polyaniline films. The reversibility was shown by studying the cyclic voltammetry indicating a
higher working potential displayed by HCI. This is also shown in the chronoamperometric
studies as 1 M HCI showed higher current density vs. time comparing to the
chronoamperometric studies displayed by H,SO,. This is due to SO,* being larger in size and
having a bigger charge than CI". Moreover, over time, the current density increases as the film
thickness grew, which is due to an increase of conductivity as more layers are added. The current
density stayed the same for similar concentration in different gel consistencies (gelatin vs. PVA)
for the chronoamperometric studies. However, the change in the electrolyte’s consistency, from
liquid to semi-solid, did change the electrochemical properties of the film , as the PVA and
gelatin moleculars’ structure interfered with the transfer of ions to the electrode. Finally, in the
EIS, it was shown that these PANI thin films exhibit a pseudo-capacitance behavior, and as the
film thickness grew, the capacitance increased. PB/PANI has a higher capacitance than the 2
layers of PANI film; whereas, RhB/PANI has a capacitance value that lies between the 1 layer
PANI and 2 layer PANI. This is due to PB being a hexacyanoferrate material, which increases

the capacitance of the electrode
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CHAPTER 7. FUTURE RECOMMENDATION

This thesis concentrated on the studies of polyaniline as a single electrode for the application of
electrochromic device. Instead, the whole performance and properties of the device can be
studied. Also, only two dyes have been used, but copolymerization between PANI and another
polymer, nanoparticles, or different dye (merocyanine, phthalocyanine, congo red, etc.) could be
used, which will broaden our color spectrum or improve the electrode. HCI and H,SO,4 were used
as protonic acid along with Gelatin and PVA based electrolyte. Other acids can be studied, and
instead of only studying liquid and semisolid electrolytes, a solid electrolyte can be used to study
the electrochemical properties of the film. This can help decide which electrolyte will perform

the fastest switching property.
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Uthpala Karunarathne <uthpalak@nsf.ac.lk> 11/13/14 -~ -
tome -

Dear Soukaina,

Thank you for contacting the Editorial Office.
You can use the Table in your thesis without any problem.

Best regards,

Uthpala Karunarathne

Scientific Officer (Editorial Office)
National Science Foundation,
47/5, Maitland Place, Colombo 07,
SRILANKA.

Phone: +94(0) 112696771-3 Ext: 122
Fax: +94(0) 112604754

The full text of the INSF can be accessed through Sri Lanka Journals Online: http://www sljolinfo/index php/TNSFST /index

From: Soukaina Rami [mailto:soukaina@mail,usf.edu]
Sent: Thursday, November 13, 2014 1:55 AM

To: jnsf@nsf.ac.lk; scumming@inasp.info
Subject: rights

Hi,
My name is Soukaina Rami, and I am a graduate mechanical engineering student at the University of South Florida. I would
like to get the rights to use one of the table 1 published in the paper below in my thesis manuscript.

These are the papers informations:

Polyaniline retained glass templates as sensors for acidic basic and/or redox gases by R.M.G Rajapakse, et al. 2000
28(4)p.277-285

Regards,

Soukaina Rami

79

www.manharaa.com




Below is permission for the use of figure 20.

Order Completed
Thank you very much for your order.

This is a License Agreement between soukaina rami ("You") and Elsevier ("Elsevier”). The license consists
of your order details, the terms and conditions provided by Elsevier, and the payment terms and

E

h ntable license.

|F

-icense date Jan 13, 2015

_icensed content publication  Polymer

_icensed content author W.S. Huang,A.G. MacDiarmid
-icensed content volume 24
wumber

Number of pages 13

Sortion figures/tables/illustrations

“ormat both print and electronic

Will you be translating? No

Title of your Synthesis, Characterization, and Electrochromic properties of Polyaniline Thin films
:hesis/dissertation

Zstimated size (number of 100
sages)

dermissions price 0.00 USD

-

otal 0.00 USD

: * I I I 80
. | A"
e | ) L-.n.-..-.-'-"_‘,:il"...ll J

www.manharaa.com




Below is permission for the use of figure 14, 15, 30.
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